Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112751

RESUMO

This study presents the assembly and comparative genomic analysis of luminous Photobacterium strains isolated from the light organs of 12 fish species using Oxford Nanopore Technologies (ONT) sequencing. The majority of assemblies achieved chromosome-level continuity, consisting of one large (>3 Mbp) and one small (~1.5 Mbp) contig, with near complete BUSCO scores along with varying plasmid sequences. Leveraging this dataset, this study significantly expanded the available genomes for P. leiognathi and its subspecies P. 'mandapamensis', enabling a comparative genomic analysis between the two lineages. An analysis of the large and small chromosomes unveiled distinct patterns of core and accessory genes, with a larger fraction of the core genes residing on the large chromosome, supporting the hypothesis of secondary chromosome evolution from megaplasmids in Vibrionaceae. In addition, we discovered a proposed new species, Photobacterium acropomis sp. nov., isolated from an acropomatid host, with an average nucleotide identify (ANI) of 93 % compared to the P. leiognathi and P. 'mandapamensis' strains. A comparison of the P. leiognathi and P. 'mandapamensis' lineages revealed minimal differences in gene content, yet highlighted the former's larger genome size and potential for horizontal gene transfer. An investigation of the lux-rib operon, responsible for light production, indicated congruence between the presence of luxF and host family, challenging its role in differentiating P. 'mandapamensis' from P. leiognathi. Further insights were derived from the identification of metabolic differences, such as the presence of the NADH:quinone oxidoreductase respiratory complex I in P. leiognathi as well as variations in the type II secretion system (T2S) genes between the lineages, potentially impacting protein secretion and symbiosis. In summary, this study advances our understanding of Photobacterium genome evolution, highlighting subtle differences between closely related lineages, specifically P. leiognathi and P. 'mandapamensis'. These findings highlight the benefit of long read sequencing for bacterial genome assembly and pangenome analysis and provide a foundation for exploring early bacterial speciation processes of these facultative light organ symbionts.


Assuntos
Photobacterium , Simbiose , Animais , Photobacterium/genética , DNA Bacteriano/genética , Genômica , Genoma Bacteriano
2.
Microbiologyopen ; 12(4): e1374, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37642481

RESUMO

Gene inactivation studies are critical in pathogenic bacteria, where insights into species biology can guide the development of vaccines and treatments. Allelic exchange via homologous recombination is a generic method of targeted gene editing in bacteria. However, generally applicable protocols are lacking, and suboptimal approaches are often used for nonstandard but epidemiologically important species. Photobacterium damselae subsp. piscicida (Pdp) is a primary pathogen of fish in aquaculture and has been considered hard to transform since the mid-1990s. Consequently, conjugative transfer of RK2/RP4 suicide vectors from Escherichia coli S17-1/SM10 donor strains, a system prone to off-target mutagenesis, was used to deliver the allelic exchange DNA in previous studies. Here we have achieved efficient electrotransformation in Pdp using a salt-free highly concentrated sucrose solution, which performs as a hypertonic wash buffer, cryoprotectant, and electroporation buffer. High-efficiency transformation has enabled vector-free mutagenesis for which we have employed circular minimalistic constructs (knockout minicircles) containing only allelic exchange essentials that were generated by Gibson assembly. Preparation of competent cells using sucrose and electroporation/integration of minicircles had virtually no detectable off-target promutagenic effect. In contrast, a downstream sacB selection apparently induced several large deletions via mobilization of transposable elements. Electroporation of minicircles into sucrose-treated cells is a versatile broadly applicable approach that may facilitate allelic exchange in a wide range of microbial species. The method permitted inactivation of a primary virulence factor unique to Pdp, apoptogenic toxin AIP56, demonstrating the efficacy of minicircles for difficult KO targets located on the high copy number of small plasmids.


Assuntos
Eletroporação , Photobacterium , Animais , Photobacterium/genética , Peixes
3.
mSystems ; 8(3): e0125322, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37288979

RESUMO

Facultative marine bacterial pathogens sense environmental signals so that the expression of virulence factors is upregulated on entry into hosts and downregulated during the free-living lifestyle in the environment. In this study, we utilized transcriptome sequencing to compare the transcriptional profiles of Photobacterium damselae subsp. damselae, a generalist pathogen that causes disease in diverse marine animals and fatal infections in humans at NaCl concentrations that mimic the free-living lifestyle or host internal milieu, respectively. We here show that NaCl concentration constitutes a major regulatory signal that shapes the transcriptome and uncover 1,808 differentially expressed genes (888 upregulated and 920 downregulated in response to low-salt conditions). Growth at 3% NaCl, a salinity that mimics the free-living lifestyle, upregulated genes involved in energy production, nitrogen metabolism, transport of compatible solutes, utilization of trehalose and fructose, and carbohydrate and amino acid metabolism with strong upregulation of the arginine deiminase system (ADS). In addition, we observed a marked increase in resistance to antibiotics at 3% NaCl. On the contrary, the low salinity conditions (1% NaCl) that mimic those encountered in the host triggered a virulence gene expression profile that maximized the production of the type 2 secretion system (T2SS)-dependent cytotoxins damselysin, phobalysin P, and a putative PirAB-like toxin, observations that were corroborated by the analysis of the secretome. Low salinity also upregulated the expression of iron-acquisition systems, efflux pumps, and other functions related to stress response and virulence. The results of this study greatly expand our knowledge of the salinity-responsive adaptations of a generalist and versatile marine pathogen. IMPORTANCE Pathogenic Vibrionaceae species experience continuous shifts of NaCl concentration in their life cycles. However, the impact of salinity changes in gene regulation has been studied in a small number of Vibrio species. In this study, we analyzed the transcriptional response of Photobacterium damselae subsp. damselae (Pdd), a generalist and facultative pathogen, to changes in salinity, and demonstrate that growth at 1% NaCl in comparison to 3% NaCl triggers a virulence program of gene expression, with a major impact in the T2SS-dependent secretome. The decrease in NaCl concentration encountered by bacteria on entry into a host is proposed to constitute a regulatory signal that upregulates a genetic program involved in host invasion and tissue damage, nutrient scavenging (notably iron), and stress responses. This study will surely inspire new research on Pdd pathobiology, as well as on other important pathogens of the family Vibrionaceae and related taxa whose salinity regulons still await investigation.


Assuntos
Salinidade , Cloreto de Sódio , Humanos , Animais , Virulência/genética , Cloreto de Sódio/farmacologia , Photobacterium/genética , Ferro/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077108

RESUMO

The genus Photobacterium is known for its ecophysiological versatility encompassing free-living, symbiotic, and pathogenic lifestyles. Photobacterium sp. CCB-ST2H9 was isolated from estuarine sediment collected at Matang Mangrove, Malaysia. In this study, the genome of CCB-ST2H9 was sequenced, and the pan-genome of 37 Photobacterium strains was analysed. Phylogeny based on core genes showed that CCB-ST2H9 clustered with P. galatheae, forming a distinct clade with P. halotolerans, P. salinisoli, and P. arenosum. The core genome of Photobacterium was conserved in housekeeping functions, while the flexible genome was well represented by environmental genes related to energy production and carbohydrate metabolism. Genomic metrics including 16S rRNA sequence similarity, average nucleotide identity, and digital DNA-DNA hybridization values were below the cut-off for species delineation, implying that CCB-ST2H9 potentially represents a new species. Genome mining revealed that biosynthetic gene clusters (BGCs) involved in producing antimicrobial compounds such as holomycin in CCB-ST2H9 could contribute to the antagonistic potential. Furthermore, the EtOAc extract from the culture broth of CCB-ST2H9 exhibited antagonistic activity against Vibrio spp. Intriguingly, clustering based on BGCs profiles grouped P. galatheae, P. halotolerans, P. salinisoli, P. arenosum, and CCB-ST2H9 together in the heatmap by the presence of a large number of BGCs. These BGCs-rich Photobacterium strains represent great potential for bioactive secondary metabolites production and sources for novel compounds.


Assuntos
Ácidos Graxos , Photobacterium , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genômica , Família Multigênica , Photobacterium/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Appl Environ Microbiol ; 88(17): e0110522, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000852

RESUMO

The marine bacterium Photobacterium galatheae S2753 produces a group of cyclodepsipeptides, called solonamides, which impede the virulence but not the survival of Staphylococcus aureus. In addition to their invaluable antivirulence activity, little is known about the biosynthesis and physiological function of solonamides in the native producer. This study generated a solonamide-deficient (Δsol) mutant by in-frame deletion of the sol gene, thereby identifying the core gene for solonamide biosynthesis. By annotation from antiSMASH, the biosynthetic pathway of solonamides in S2753 was also proposed. Mass spectrometry analysis of cell extracts found that deficiency of solonamide production influenced the production of a group of unknown compounds but otherwise did not alter the overall secondary metabolite profile. Physiological comparison between Δsol and wild-type S2753 demonstrated that growth dynamics and biofilm formation of both strains were similar; however, the Δsol mutant displayed reduced motility rings compared to the wild type. Reintroduction of sol restored solonamide production and motility to the mutant, indicating that solonamides influence the motility behavior of P. galatheae S2753. Proteomic analysis of the Δsol and wild-type strains found that eliminating solonamides influenced many cellular processes, including swimming-related proteins and proteins adjusting the cellular cyclic di-GMP concentration. In conclusion, our results revealed the biosynthetic pathway of solonamides and their ecological benefits to P. galatheae S2753 by enhancing motility, likely by altering the motile physiology. IMPORTANCE The broad range of bioactive potentials of cyclodepsipeptides makes these compounds invaluable in the pharmaceutical industry. Recently, a few novel cyclodepsipeptides have been discovered in marine Proteobacteria; however, their biosynthetic pathways remain to be revealed. Here, we demonstrated the biosynthetic genetic basis and pathway of the antivirulence compounds known as solonamides in P. galatheae S2753. This can pave the way for the biological overproduction of solonamides on an industrial scale. Moreover, the comparison of a solonamide-deficient mutant and wild-type S2753 demonstrated that solonamides stimulate the swimming behavior of S2753 and also influence a few key physiological processes of the native producers. These results evidenced that, in addition to their importance as novel drug candidates, these compounds play a pivotal role in the physiology of the producing microorganisms and potentially provide the native producer competitive benefits for their survival in nature.


Assuntos
Depsipeptídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Depsipeptídeos/genética , Regulação Bacteriana da Expressão Gênica , Photobacterium/genética , Proteômica , Virulência/genética
6.
Arch Microbiol ; 204(8): 467, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804270

RESUMO

This study investigated the impact of Brochothrix (B.) thermosphacta and Pseudomonas (Ps.) fragi on the transcriptomes of Photobacterium (P.) phosphoreum and P. carnosum on chicken meat under modified atmosphere (MA) and air atmosphere (AA). P. phosphoreum TMW2.2103 responded to MA with a reduced transcript number related to cell division and an enhanced number related to oxidative stress. Concomitantly, the analysis revealed upregulation of fermentation and downregulation of respiration. It predicts enhanced substrate competition in presence of co-contaminants/MA. In contrast, the strain upregulated the respiration in AA, supposably due to improved substrate accessibility in this situation. For P. carnosum TMW2.2149 the respiration was downregulated, and the pyruvate metabolism upregulated under MA. MA/co-contaminant resulted in multiple upregulated metabolic routes. Conversely, AA/co-contaminant resulted only in minor regulations, showing inability to cope with fast growing competitors. Observations reveal different strategies of photobacteria to react to co-contaminants on meat.


Assuntos
Galinhas , Photobacterium , Animais , Galinhas/microbiologia , Microbiologia de Alimentos , Carne/microbiologia , Photobacterium/genética , Photobacterium/metabolismo , Transcriptoma
7.
Curr Microbiol ; 79(8): 219, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704100

RESUMO

Cream colored bacteria from marine agar, strain WH24, WH77, and WH80 were isolated from the gill of the Crassostrea gigas a Pacific oyster with a filter-feeding habit that compels accompanying bacteria to demonstrate a high metabolic capacity, has proven able to colonize locations with changing circumstances. Based on the 16S rRNA gene sequence, all strains had high similarity to Photobacterium arenosum CAU 1568T (99.72%). This study involved phenotypic traits, phylogenetic analysis, antimicrobial activity evaluation, genome mining, Co-cultivation experiments, and chemical studies of crude extracts using HPLC and LC-HRESIMS. Photobacterium arenosum WH24 and Zooshikella harenae WH53Twere co-cultivated for 3 days in a rotary shaker at 160 rpm at 30 °C, and LC-MS monitored the chemical profiles of the co-cultures on the third day. The UV chromatograms of the extracts of the co-cultivation experiments show that Zooshikella harenae WH53T could be inhibited by strain WH24. The high virulence of Photobacterium arenosum WH24 was confirmed by genome analysis. Gene groups with high virulence potential were detected: tssA (ImpA), tssB (ImpB/vipA), tssC (ImpC/vipB), tssE, tssF (ImpG/vasA), tssG (ImpH/vasB), tssM (IcmF/vasK), tssJ (vasD), tssK (ImpJ/vasE), tssL (ImpK/vasF), clpV (tssH), vasH, hcp, lapP, plpD, and tpsB family.


Assuntos
Crassostrea , Animais , Crassostrea/microbiologia , Brânquias , Mar do Norte , Photobacterium/genética , Filogenia , RNA Ribossômico 16S/genética , Virulência
8.
J Biol Chem ; 298(6): 102006, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504354

RESUMO

The discovery of reduced flavin mononucleotide and fatty aldehydes as essential factors of light emission facilitated study of bacterial luminescence. Although the molecular mechanisms underlying bacterial luminescence have been studied for more than 60 years, the structure of the bacterial fatty acid reductase complex remains unclear. Here, we report the cryo-EM structure of the Photobacterium phosphoreum fatty acid reductase complex LuxC-LuxE to a resolution of 2.79 Å. We show that the active site Lys238/Arg355 pair of LuxE is >30 Å from the active site Cys296 of LuxC, implying that catalysis relies on a large conformational change. Furthermore, mutagenesis and biochemical experiments support that the L-shaped cleft inside LuxC plays an important role in substrate binding and reaction. We obtained a series of mutants with significantly improved activity as measured by in vitro bioluminescence assays and demonstrated that the double mutant W111A/F483K displayed the highest activity (370% of the WT). Our results indicated that the activity of LuxC significantly affects the bacterial bioluminescence reaction. Finally, we expressed this mutated lux operon in Escherichia coli but observed that the in vivo concentrations of ATP and NADPH limited the enzyme activity; thus, we conclude that the luminous intensity mainly depends on the level of metabolic energy.


Assuntos
Aldeído Oxirredutases , Proteínas de Bactérias , Oxirredutases , Photobacterium , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Luminescência , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Óperon , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Photobacterium/genética
9.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563122

RESUMO

The marine bacterium Photobacterium damselae subsp. piscicida (Pdp) causes photobacteriosis in fish and important financial losses in aquaculture, but knowledge of its virulence factors is still scarce. We here demonstrate that an unstable plasmid (pPHDPT3) that encodes a type III secretion system (T3SS) is highly prevalent in Pdp strains from different geographical origins and fish host species. We found that pPHDPT3 undergoes curing upon in vitro cultivation, and this instability constitutes a generalized feature of pPHDPT3-like plasmids in Pdp strains. pPHDPT3 markers were detected in tissues of naturally-infected moribund fish and in the Pdp colonies grown directly from the fish tissues but were undetectable in a fraction of the colonies produced upon the first passage of the primeval colonies on agar plates. Notably, cured strains exhibited a marked reduction in virulence for fish, demonstrating that pPHDPT3 is a major virulence factor of Pdp. The attempts to stabilize pPHDPT3 by insertion of antibiotic resistance markers by allelic exchange caused an even greater reduction in virulence. We hypothesize that the existence of a high pressure to shed pPHDPT3 plasmid in vitro caused the selection of clones with off-target mutations and gene rearrangements during the process of genetic modification. Collectively, these results show that pPHDPT3 constitutes a novel, hitherto unreported virulence factor of Pdp that shows a high instability in vitro and warn that the picture of Pdp virulence genes has been historically underestimated, since the loss of the T3SS and other plasmid-borne genes may have occurred systematically in laboratories for decades.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Doenças dos Peixes/microbiologia , Peixes/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Photobacterium/genética , Plasmídeos/genética , Sistemas de Secreção Tipo III/genética , Virulência/genética , Fatores de Virulência/genética
10.
Fish Shellfish Immunol ; 124: 280-288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421575

RESUMO

A pseudotuberculosis pathogen, Photobacterium damselae subsp. piscicida (Pdp), has caused enormous economic damage to yellowtail aquaculture in Japan. The Ivy gene has been discovered in plasmid of Pdp, and it has been proposed that it may help bacteria evade lysozyme-mediated lysis during interaction with an animal host. However, the lysozyme-inhibiting activity of Pdp-derived Ivy (Ivy-Pdp) is unknown, and it is unclear whether it acts as a virulence factor for host biophylaxis. In this study, the inhibitory effect of Ivy-Pdp on lysozyme was evaluated by expressing and purifying the recombinant Ivy-Pdp protein (rIvy-Pdp). The rIvy-Pdp protein inhibited hen egg white lysozyme activity in an rIvy-Pdp-concentration-dependent manner, and its inhibitory effect was similar under different temperature and pH conditions. The serum and skin mucus of the yellowtail (which is the host species of Pdp), Japanese flounder, and Nile tilapia showed bacteriolytic activity. In contrast, the addition of rIvy-Pdp inhibited the lytic activity in the serum of these fish species. In particular, it significantly inhibited lytic activity in the serum and skin mucus of Nile tilapia. On the basis of these results, we suggest that Ivy-Pdp is a temperature- and pH-stable lysozyme inhibitor. Additionally, Ivy-Pdp inhibited the lytic activity of lysozyme, which is involved in host biophylaxis. In summary, we inferred that Ivy-Pdp is an important factor that diminishes the sterilization ability of C-type lysozyme when Pdp infects the host.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Perciformes , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Muramidase/genética , Muramidase/metabolismo , Photobacterium/genética
11.
Toxins (Basel) ; 14(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202146

RESUMO

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative bacterium that infects a large number of marine fish species in Europe, Asia, and America, both in aquacultures and in the natural environment. Among the affected hosts are economically important cultured fish, such as sea bream (Sparus aurata), sea bass (Dicentrarchus labrax), yellowtail (Seriola quinqueradiata), and cobia (Rachycentron canadum). The best characterized virulence factor of Phdp is the Apoptosis-Inducing Protein of 56 kDa (AIP56), a secreted AB-type toxin that has been shown to induce apoptosis of sea bass phagocytes during infection. AIP56 has an A subunit that displays metalloprotease activity against NF-kB p65 and a B subunit that mediates binding and internalization of the A subunit in susceptible cells. Despite the fact that the aip56 gene is highly prevalent in Phdp isolates from different fish species, the toxicity of AIP56 has only been studied in sea bass. In the present study, the toxicity of AIP56 for sea bream was evaluated. Ex vivo assays showed that sea bream phagocytes are resistant to AIP56 cytotoxicity and that resistance was associated with an inefficient internalization of the toxin by those cells. Accordingly, in vivo intoxication assays revealed that sea bream is much more resistant to AIP56-induced lethality than sea bass. These findings, showing that the effect of AIP56 is different in sea bass and sea bream, set the basis for future studies to characterize the effects of AIP56 and to fully elucidate its virulence role in different Phdp susceptible hosts.


Assuntos
Proteínas Reguladoras de Apoptose/toxicidade , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Photobacterium , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Bass , Rim Cefálico/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/patologia , Photobacterium/genética , Photobacterium/metabolismo , Dourada , Baço/patologia , Fator de Transcrição RelA/metabolismo
12.
Microb Ecol ; 83(3): 789-797, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34245329

RESUMO

The microbiota of fish skin, the primary barrier against disease, is highly dynamic and modulated by several factors. In fish aquaculture, disease outbreaks occur mainly during early-life stages, with associated high economic losses. Antibiotic treatments sometimes remain the best option to control bacterial diseases, despite many reported negative impacts of its use on fish and associated microbiota. Notwithstanding, studies monitoring the effects of disease and antibiotic treatment on the microbiota of fingerlings are scarce. We sequenced the bacterial 16S rRNA V4 gene region using a metabarcoding approach to assess the impact of a mixed infection with Photobacterium damselae ssp. piscicida and Vibrio harveyi and subsequent antibiotic treatment with flumequine, on the skin microbiota of farmed seabass (Dicentrarchus labrax) fingerlings. Both infection and antibiotic treatment led to a significant increase in bacterial diversity and core microbial communities and impacted microbiome structure. Dysbiosis was confirmed by changes in the abundance of potential pathogenic and opportunistic bacterial taxa. Skin bacterial metabolic function was also significantly affected by flumequine administration, suggesting a detriment to fish skin health. Our results add to an increasing body of literature, showing how fish microbiome response to infection and antibiotics cannot be easily predicted.


Assuntos
Bass , Doenças dos Peixes , Microbiota , Animais , Antibacterianos/farmacologia , Aquicultura/métodos , Bass/genética , Bass/microbiologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Photobacterium/genética , RNA Ribossômico 16S/genética
13.
Environ Microbiol ; 23(9): 4859-4880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423883

RESUMO

The marine bacterium Photobacterium damselae subsp. damselae (Pdd) causes disease in marine animals and humans. Previous studies demonstrated that mutation of the two-component system RstAB strongly impacts virulence of this pathogen, but the RstAB regulon has not been thoroughly elucidated. We here compared the transcriptomes of Pdd RM-71 and ΔrstA and ΔrstB derivatives using RNA-seq. In accordance with previous studies, RstAB positively regulated cytotoxins Dly, PhlyP and PhlyC. This analysis also demonstrated a positive regulation of outer membrane proteins, resistance against antimicrobials and potential virulence factors by this system. Remarkably, RstAB positively regulated two hitherto uncharacterised gene clusters involved in the synthesis of a polysaccharide capsule. Presence of a capsular layer in wild-type cells was confirmed by transmission electron microscopy, whereas rstA and rstB mutants were non-capsulated. Mutants for capsule synthesis genes, wza and wzc exhibited acapsular phenotypes, were impaired in resistance against the bactericidal action of fish serum and mucus, and were strongly impaired in virulence for fish, indicating a major role of capsule in virulence. Collectively, this study demonstrates that RstAB is a major positive regulator of key virulence factors including a polysaccharide capsule essential for full virulence in a pathogenic Photobacterium.


Assuntos
Doenças dos Peixes , Photobacterium , Animais , Humanos , Photobacterium/genética , Polissacarídeos , Virulência/genética
14.
Microbiologyopen ; 10(2): e1182, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33970538

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that can be manufactured sustainably and represent a promising green alternative to petrochemical-based plastics. Here, we describe the complete genome of a new marine PHA-producing bacterium-Photobacterium ganghwense (strain C2.2), which we have isolated from the Black Sea seashore. This new isolate is psychrotolerant and accumulates PHA when glycerol is provided as the main carbon source. Transmission electron microscopy, specific staining with Nile Red visualized via epifluorescence microscopy and gas chromatography analysis confirmed the accumulation of PHA. This is the only PHA-producing Photobacterium for which we now have a complete genome sequence, allowing us to investigate the pathways for PHA production and other secondary metabolite synthesis pathways. The de novo assembly genome, obtained using open-source tools, comprises two chromosomes (3.5, 2 Mbp) and a megaplasmid (202 kbp). We identify the entire PHA synthesis gene cluster that encodes a class I PHA synthase, a phasin, a 3-ketothiolase, and an acetoacetyl-CoA reductase. No conventional PHA depolymerase was identified in strain C2.2, but a putative lipase with extracellular amorphous PHA depolymerase activity was annotated, suggesting that C2.2 is unable to degrade intracellular PHA. A complete pathway for the conversion of glycerol to acetyl-CoA was annotated, in accordance with its ability to convert glycerol to PHA. Several secondary metabolite biosynthetic gene clusters and a low number of genes involved in antibiotic resistance and virulence were also identified, indicating the strain's suitability for biotechnological applications.


Assuntos
Vias Biossintéticas/genética , Genoma Bacteriano , Photobacterium/genética , Photobacterium/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferase/genética , Aciltransferases/genética , Oxirredutases do Álcool/genética , Organismos Aquáticos/genética , Farmacorresistência Bacteriana/genética , Glicerol/metabolismo , Photobacterium/classificação , Lectinas de Plantas/genética , Plasmídeos , Microbiologia do Solo , Virulência/genética , Sequenciamento Completo do Genoma
15.
Appl Environ Microbiol ; 87(12): e0003521, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837011

RESUMO

The biosynthesis and incorporation of polyunsaturated fatty acids into phospholipid membranes are unique features of certain marine Gammaproteobacteria inhabiting high-pressure and/or low-temperature environments. In these bacteria, monounsaturated and saturated fatty acids are produced via the classical dissociated type II fatty acid synthase mechanism, while omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are produced by a hybrid polyketide/fatty acid synthase-encoded by the pfa genes-also referred to as the secondary lipid synthase mechanism. In this work, phenotypes associated with partial or complete loss of monounsaturated biosynthesis are shown to be compensated for by severalfold increased production of polyunsaturated fatty acids in the model marine bacterium Photobacterium profundum SS9. One route to suppression of these phenotypes could be achieved by transposition of insertion sequences within or upstream of the fabD coding sequence, which encodes malonyl coenzyme A (malonyl-CoA) acyl carrier protein transacylase. Genetic experiments in this strain indicated that fabD is not an essential gene, yet mutations in fabD and pfaA are synthetically lethal. Based on these results, we speculated that the malonyl-CoA transacylase domain within PfaA compensates for loss of FabD activity. Heterologous expression of either pfaABCD from P. profundum SS9 or pfaABCDE from Shewanella pealeana in Escherichia coli complemented the loss of the chromosomal copy of fabD in vivo. The co-occurrence of independent, yet compensatory, fatty acid biosynthetic pathways in selected marine bacteria may provide genetic redundancy to optimize fitness under extreme conditions. IMPORTANCE A defining trait among many cultured piezophilic and/or psychrophilic marine Gammaproteobacteria is the incorporation of both monounsaturated and polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of these different classes of fatty acid molecules is linked to two genetically distinct co-occurring pathways that utilize the same pool of intracellular precursors. Using a genetic approach, new insights into the interactions between these two biosynthetic pathways have been gained. Specifically, core fatty acid biosynthesis genes previously thought to be essential were found to be nonessential in strains harboring both pathways due to functional overlap between the two pathways. These results provide new routes to genetically optimize long-chain omega-3 polyunsaturated fatty acid biosynthesis in bacteria and reveal a possible ecological role for maintaining multiple pathways for lipid synthesis in a single bacterium.


Assuntos
Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/biossíntese , Photobacterium/genética , Escherichia coli/genética , Ácido Graxo Sintase Tipo II/metabolismo , Mutação , Photobacterium/metabolismo
16.
Microb Genom ; 7(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33885359

RESUMO

Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae, often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida, and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida - a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis. Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Genoma Bacteriano , Photobacterium/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Evolução Molecular , Photobacterium/classificação , Photobacterium/isolamento & purificação , Filogenia , Fatores de Virulência/metabolismo
17.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536321

RESUMO

Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.


Assuntos
Bactérias/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Photobacterium/enzimologia , Photobacterium/metabolismo , Animais , Parede Celular/química , Parede Celular/metabolismo , Endopeptidases/análise , Endopeptidases/química , Endopeptidases/genética , Peixes/microbiologia , Photobacterium/genética
18.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105683

RESUMO

The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr-). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two Scr- Pdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium.


Assuntos
Família Multigênica/genética , Photobacterium/genética , Photobacterium/metabolismo , Sacarose/metabolismo , Frutoquinases/genética , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genes Essenciais/genética , Genoma Bacteriano/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Photobacterium/isolamento & purificação , beta-Frutofuranosidase/genética
19.
Int J Food Microbiol ; 334: 108815, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32966918

RESUMO

Histamine or scombrotoxin fish poisoning is caused by ingestion of bacterially produced histamine in fish. Histamine-producing bacteria generally contain the histidine decarboxylase gene (hdc). However, some strains of Photobacterium phosphoreum are known to produce significant levels of histamine, although the hdc gene in these strains has not been recognized. The objective of this study was to investigate a previously unidentified mechanism of histamine production by P. phosphoreum. We identified a protein with histidine decarboxylase (HDC) activity comparable to activity of the pyridoxal-5-phosphate (PLP) dependent HDC from P. kishitanii and M. morganii. The newly identified protein (HDC2) in P. phosphoreum and P. kishitanii strains, was approximately 2× longer than the HDC protein from other Gram-negative bacteria and had 12% similarity to previously identified HDCs. In addition, the hdc2 gene cluster in P. phosphoreum was identical to the hdc gene cluster in P. kishitanii. HDC2 had optimal activity at 20-35 °C, at pH 4, and was not affected by 0-8% NaCl concentrations. Compared to the hdc gene from P. kishitanii, expression of the hdc2 gene was constitutive and not affected by pH or excess histidine. This newly identified protein explains possible mechanisms of histamine production in P. phosphoreum. Characterization of this protein will help in designing control measures to prevent or reduce histamine production in fish.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Descarboxilase/metabolismo , Photobacterium/enzimologia , Animais , Proteínas de Bactérias/genética , Peixes/metabolismo , Peixes/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Histamina/biossíntese , Histidina Descarboxilase/genética , Concentração de Íons de Hidrogênio , Família Multigênica , Photobacterium/genética , Photobacterium/metabolismo , Fosfato de Piridoxal/metabolismo , Temperatura
20.
J Fish Dis ; 43(12): 1505-1517, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32984991

RESUMO

Mass mortality has occurred among cultured Nile tilapia, Oreochromis niloticus, on fish farms in Manzala, Dakahlia province, Egypt, in the summer season, 2019. Moribund fish were reported with deep ulcers, septicaemic lesions and sampled for bacterial isolation. In this study, most isolates were subjected to bacteriological examination, antibiotic sensitivity test, 16S rRNA gene sequencing and histopathological examination. Following isolate identification, intraperitoneal challenge of Nile tilapia with a bacterial suspension 2 × 106  CFU/ml was performed. Samples from liver, spleen and kidney were collected for histological and biochemical analysis. The results showed a high similarity (99%) to Photobacterium damselae strains using phylogenetic analysis of 16S rRNA. P. damselae exhibited resistance to amoxicillin and erythromycin, as well it was highly sensitive to chloramphenicol and doxycycline. Moreover, haemorrhage, oedema, hemosiderosis and melanomacrophage activation in the liver and head kidney of infected fish were detected by light and electron microscopy. Also, significant higher levels of CAT and SOD in the spleen and head kidney, as well as the serum levels of NO were observed in experimentally challenged O. niloticus, compared to the control fish. Our data identified P. damselae for the first time from infected Nile tilapia, describing its sensitivity to a variety of antibiotics, histopathological alterations and oxidative stress impact, and it could be useful indicators for understanding P. damselae pathogenesis, which might provide a preventive efficacy for P. damselae.


Assuntos
Doenças dos Peixes/microbiologia , Photobacterium/efeitos dos fármacos , Photobacterium/isolamento & purificação , Animais , Aquicultura , Ciclídeos/microbiologia , Farmacorresistência Bacteriana , Egito , Doenças dos Peixes/patologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Testes de Sensibilidade Microbiana , Photobacterium/genética , Photobacterium/patogenicidade , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...